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ABSTRACT

DNA chips and microarrays are used to profile
gene transcription. Unfortunately, the initial
fabrication cost for a chip and the reagent costs
to amplify thousands of open reading frames for
a microarray are over $100K for a typical 4
Mbase bacterial genome. To avoid these
expensive steps, a matrix formulation of a
universal hybrid chip-microarray approach to
transcript profiling is demonstrated for synthetic
data. Initial considerations for application to the
4.3 Mbase bacterium Yersinia pestis are also
presented. This approach can be applied to
arbitrary bacteria by recalculating a matrix and
pseudoinverse. This approach avoids the large
upfront expenses associated with DNA chips
and microarrays.

1. INTRODUCTION

The adenine (A), cytosine (C), guanine (G), and
thymine (T) nitrogenous bases of DNA
preferentially bind A-to-T and G-to-C. The
complementary base pairing property can be
used as a powerful detection method by the
hybridizing (binding) of a reference strand of
DNA to a test strand. DNA sequencing,
transcript profiling, and clinical diagnostics are a
few of the applications that exploit DNA
hybridization. This paper focuses on transcript
profiling applications to detect the level of
mRNA (gene expression). The hybridization
approaches are derived from DNA chips [1],

DNA microarrays [2], and sequencing by
hybridization methods [3].

The matrix approach that we propose is
based on a generalized experiment described
graphically in Fig. 1. Detection of a test strand
of DNA is accomplished by hybridization with a
complementary reference strand of length
N=Na+Ns. The N-mer is composed of an array
of Na-mers attached to a glass substrate in a
manner similar to microarrays. The additional Ns

bases for the detection are introduced in
solution. Using extension enzymes or special
linker chemistries, the discrimination power
after hybridization is the same as with a whole
N-mer. Even when multiple Ns-mers hybridize

Fig. 1. Description of hybridization
experiment for transcript profiling.
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Fig. 2. Model prediction that 12 bases are
needed to discriminate 100,000 genes (ORFs).

to the same spot, we want to identify the source
genes. One solution is to place the competing
Ns-mers into separate pools or experiments.

Our goal is to monitor message RNA level
of most genes (over 90%) in a prokaryotic
organism (bacterium) without custom
microarrays. Nothing in the described method
limits the approach to prokaryotes. The
hybridization, however, is currently restricted in
oligonucleotide length to about 10 bases. As the
length increases from 10-mers to 12-mers and
longer (see Fig. 2), eukaryotic profiling
including human gene profiling will be possible
with the same technique [4].

2. MATRIX FORMULATION

A matrix formulation of the experiment is M =
P D G, where
G = gene expression vector to be estimated (g x

1 column vector) representing the level of
activity for g  genes.

D = DNA matrix (4N x g) that maps individual
genes into constitutive N-mers. Let D(i,j)
be the value of D  at position (i,j) where
(i,j) run (1,1) to (4N, g). D(i,j) is defined as
the number of times that the i th N-mer
occurs in gene j.

N = Na + Ns is the number of bases in the DNA
reference strand.

Na = number of bases in the oligos attached to
the substrate.

Fig. 3. Ten genes of length 10 are used as a
synthetic genome for demonstrating the
technique. Unique 3-mers indicating the
discrimination power of the detection are
highlighted. Note that there is no 3-mer unique
to gene #1.

Ns = number of bases in the oligo extension
introduced in solut ion during
hybridization.

P = pooling matrix (p 4Na x 4N) where p is the
number of experimental pools.

M = measurement vector (p 4Na x 1 column
vector) representing the outcome of an
experiment.

We have assumed that all possible Na-mers are
attached to the substrate. The matrix formulation
is more general than this and any set of oligos
(even of varying lengths) could have been used.
However, we anticipate using the HyChip by
HySeq for our transcript profiling and it uses all
possible 5-mers at this time [5].

With the experiment constructed as a matrix
multiply, the same approach as in the classic
Ax=b matrix formulation can be used. Recall
that if AAT is invertible, then the optimal least
squares solution or pseudoinverse is

xLS = AT (A AT)-1 b. (1)

3. EXAMPLE

To demonstrate the matrix approach, consider an
artificial genome with 10 genes of 10 randomly
assigned bases. In Fig. 3, we show the genes as

Gene
0 1 2 3 4 5 6 7 8 9

0 T G G C C T T A G C

1 C T A G G T T T T T

2 C T T T A A A A T A

3 T G A T C T C A C A

4 G A C A T G G G A T

5 A A C C G T A A T A

6 T T T T G T T A C C

7 A C G T G G T T G G

8 C G A G T C C G A C

9 T A T A C A G G G A
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Gene
0 1 2 3 4 5 6 7 8 9

AAA 0 0 0 0 0 0 0 0 0 0
AAC 0 0 0 0 0 0 0 0 0 0
AAG 0 0 0 0 0 0 0 1 0 0
AAT 0 1 0 0 0 0 0 1 0 1
ACA 0 0 0 0 0 0 0 0 0 0
ACC 0 0 1 0 0 0 0 0 0 0
ACG 0 0 0 0 0 0 1 0 0 1
ACT 1 0 0 1 1 0 0 0 0 0
AGA 0 0 0 0 0 0 0 1 0 0
AGC 0 0 0 0 0 0 0 0 0 0

Fig. 4. The first 10 rows of the 64 row by 10
column D matrix. Rows with a single nonzero
element are unique identifiers of a gene. For
instance, AAG is 0 except for the 1 in the gene 7
column. Compare these entries with the
highlighted 3-mers in Fig. 2.

well as highlighting the unique 3-mers i.e., a
3-mer that appears in only one gene.

For this example, we use a 3-mer reference
strand (N=3) comprised of a single base attached
to a substrate (Na=1) and a 2-mer in solution
(Ns=2). There are four spots on the slide (A, C,
G, and T). A few of the rows of the D matrix
generated from the genes in Fig. 3 are shown in
Fig. 4. The first Na bases in the index column
(the first A  for the rows in Fig. 4) correspond
to the attached Na—mers so that the pooling and
measurement matrices are easier to interpret.
Rows that contain a single non-zero element
represent 3-mers that uniquely identify a
gene e.g., AAG, ACC, AGA for genes 7, 2,
and 7, respectively. If each gene had many
unique identifiers, the detection problem would
be simple. For a short oligo detection system,
however, there are many shared N-mers and so
multiple hits  must be utilized in the algorithm.
The design issues are to implement a least
squares estimation of the level of gene
expression while introducing a pooling strategy
(the P matrix) that minimizes the number of
experiments needed.

For the synthesized data we have used Na=1
and Ns=2. The experimental constraints result in
a P matrix that is sparse and with repeating

subunits. Denoting each pool by Pi, the pooling
matrix is of the form:

P1 O O O
O P1 O O
O O P1 O
O O O P1

P2 O O O
O P2 O O

…
O O Pp O
O O O Pp

Each of the Pi are repeated 41=4 times
because Na is 1 in our example. Each Pi row
vector is of length 42=16 (Ns is 2) and comprised
of 1s and 0s. A 1 indicates that a particular Ns-
mer is used in the pool. O is a zero row vector of
length Ns. For this example, we designed a set of
p=5 pools shown in Fig. 5.

P1 P2 P3 P4 P5
AA 0 0 0 0 1
AC 1 0 0 0 0
AG 1 0 0 0 0
AT 0 0 0 0 0
CA 0 0 0 0 0
CC 0 0 1 0 0
CG 0 0 0 0 0
CT 0 0 0 0 0
GA 0 0 0 0 0
GC 0 0 0 0 0
GG 0 0 0 0 0
GT 0 0 0 1 0
TA 0 0 0 0 0
TC 0 0 0 0 1
TG 0 0 0 0 0
TT 0 1 0 0 0

Fig. 5. The five pools used for the synthetic
genome example. PD has matrix rank 10.

Both D  and P D are of matrix rank 10.
Therefore the pseudoinverse exists and can be
determined using singular value decomposition
or other techniques. The pseudoinverse was
verified using MATLAB[6]. The calculation
implements Eq. (1) and estimates

GLS = (PD)T (PD (PD)T)-1 M. (2)



4. APPLICATION TO BACTERIA

To apply this approach to a specific bacterium
like Yersinia pestis requires development of
several tools and algorithms. Y. pestis is roughly
a 4.3Mbase genome and has over 4,000 genes.
Using an experimental system based on two 5-
mers (Na=Ns=5), we use the matrix approach to
design a pooling strategy. The algorithm is
1. Determine the occurrence rates of every N-

mer (0, 1, 2, etc.)
2 .  Starting with unique occurrences, then

doublets, etc. determine which attached Na-
mers are contaminated  by the proposed N-
mer and are not already in a pool.

3 .  Find the largest set of Ns-mers meeting
criterion 2 with non-intersecting
contamination sets. Place in one pool and
then return to step 2.
This approach is basically a Gram-Schmidt

orthogonalization. We have calculated the D
matrix for Y. pestis and are now designing the
pooling strategy. Fig. 6 shows the percent of
ORFs that have a unique N-mer for N ranging
from 5 to 14. Both model and data are presented
showing that a 10-mer (N=10) is sufficient to
transcript profile Y. pestis.

5. SUMMARY

In addition to designing the minimal pooling
strategy, the matrix formulation should facilitate
the design of calibration oligos and other
strategies for making microarrays more
quantitative and repeatable. We are also
introducing design constraints in the pool
specification to accommodate ribosomal and
other contaminating signals.
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